High School Teaching of Bioethics in New Zealand, Australia, and Japan

Journal: Journal of Moral Education 25 (1996), 401-420.
Yukiko Asada, Miho Tsuzuki, Shiro Akiyama, Nobuko Y. Macer and Darryl R.J. Macer.


An International Bioethics Education Survey was conducted in Australia (A), Japan (J), and New Zealand (NZ) in mid-1993. National random samples of high schools were selected, and mail response questionnaires were sent to a biology (b) and a social studies (s) teacher at each school through the principals. The number of respondents and response rate were: NZb 206 (55%), NZs 96 (26%), Ab 251 (48%), As 114 (22%), Jb 560 (40%) and Js 383 (27%). Knowledge and teaching of 15 selected topics related to bioethics and biotechnology are compared, and particular focus is on the teaching of social, ethical and environmental issues of in vitro fertilisation, prenatal diagnosis, biotechnology, nuclear power, pesticides, and genetic engineering. The general trend was more coverage in biology classes, except for nuclear power, and more coverage in Australia than New Zealand, and significantly less in Japan. Open questions looked at images of bioethics, and the reasons why about 90% of teachers thought bioethics was needed in education. Open questions on teaching materials, current and desired are also discussed, suggesting a need for development of better and more materials, for the moral education that is conducted especially in biology and social studies classes.

Introduction: Bioethical issues in education

Science educators discovered during the last two decades that the most efficient way to teach science is to discuss the science together with examples of technology and put the facts into the social context. This method of teaching is generally called the Science, Technology, and Society (STS) approach (Ramsey, 1993). Advances in biology and medicine have led to another pressure upon educators, namely how can students be prepared to face the ethical dilemmas that the technology often raises. The ethical issues associated with biology are generally grouped under the phrase "bioethics", which could be considered as a part of the STS approach. In general there are less teachers using STS approaches in Japan than in the USA (Kumano, 1991), and Australasia. Even with one country, such as the USA, there are a diversity of views on how to effect efficient education of social issues and even the science itself (Waks & Barchi, 1992). Bioethics has also emerged as a topic in moral education, as well as in geography and social studies classes, and is thus relevant to both natural and social science disciplines. Therefore this survey of bioethics teaching is a method to measure both the extent to which society issues are included in science education, and the extent to which science and technology issues are included in moral education.

In order to investigate the current inclusion of bioethical issues in high school biology and social studies classes an International Bioethics Education Survey was carried out in Australia, Japan and New Zealand. A previous survey conducted in Japan in 1991 (Macer, 1992) indicated that there is a strong consensus for the inclusion of discussion of the ethical, social and environmental issues associated with genetic engineering in school and university curriculum. From comparison to a 1990 survey in New Zealand (Couchman & Fink-Jensen, 1990), there appeared to be significantly less discussion of the social, ethical and environmental issues associated with genetic engineering in Japanese high schools than there is in New Zealand.

During 1993 we also conducted mail response surveys among the general public in these three countries as well as in Hong Kong, India, Israel, The Philippines, Russia, Singapore and Thailand, with collaborators (Macer, 1994). That International Bioethics Survey was performed in order to look at how people think about life, nature, and selected issues of science and technology, biotechnology, genetic engineering, and genetic technology. In all countries of the International Bioethics Survey there is 90+% support for "including discussion of social issues associated with science and technology in school, so that students can participate in contemporary debates". It therefore appears that there is very widespread support for inclusion of bioethics teaching in schools. As we found in this survey, teachers were even more supportive.

While this previous research shows the word bioethics is familiar to a significant proportion of people in these three countries chosen for the initial International Bioethics Education Survey, many people may not know this term while they do recognize the ethical issues associated with biology and science in general. Therefore the questionnaire was designed to look at issues that may have been discussed for a number of years, as well as issues associated with newer topics such as human gene therapy. Another question is where should bioethics education be best taught - in biology or social studies or both classes, and/or other classes within the school curriculum? To explore this social studies teachers were included in this survey. This paper reports the major conclusions for general bioethics teaching.

The International Bioethics Education Survey

In July-August 1993 the International Bioethics Education Survey was conducted in Australia, Japan, and New Zealand. The questionnaire used in Japan in 1991 (Macer, 1992) was further developed in English and Japanese, and question wording was chosen to ensure the closest possible meaning in both languages. The questionnaire consisted of 22 question sections containing about 110 individual questions, including 41 open-ended ones. In most questions teachers chose their answers from two to five options (e.g. Yes/No/Don't know; Agree strongly/Agree/Neither/Disagree/Disagree strongly), and were required to write reasons for their answer. In some questions, for example on teaching materials and the images of bioethics, they were simply asked to write their comments (Macer, 1994). Open-ended questions should not lead respondents into set responses, and were added to look at people's reasoning. The ideas in each comment were assigned to different categories, which were compared.

Six questions were used from the general International Bioethics Survey (Macer, 1994) in order to allow comparisons of public and student views, on the awareness of selected topics in science, and perceptions of benefits and risks of science and technology, acceptance of genetic engineering and gene therapy. These are discussed in detail elsewhere (Macer, 1994; Macer et al. 1995, 1996). The open question comments are published (with English translation of Japanese comments) for reference use elsewhere (Macer, 1994; Macer et al., 1996).

Four general questions (Q1-4) asked what subject(s) and in what kind of school, the teachers taught; and personal teacher information was obtained in the last section of the questionnaire. An open-ended question, "Q5. What do you think bioethics is?" was asked at the beginning to look at the images of bioethics before specific topics were discussed. The results for this question are compared here to the results for the penultimate question of the survey, "Q21. Do you think that bioethics is needed in education? Why?", to look at the possible effects of completing the questionnaire upon the teachers attitudes.

A further question (Q6) was included to ask how much teachers knew about 15 specific issues (Agricultural Pesticides, In vitro fertilisation, Prenatal diagnosis, Biological pest control, Eugenics, Computers, Biotechnology, Nuclear power, AIDS, Human gene therapy, Fibre optics, Bioethics, Genetic engineering of Plants, Genetic engineering of Microbes, Genetic engineering of Animals), and whether they had taught about them in class:

Q6. Can you tell me how much you have heard or read about each of these subjects?

1 Not heard of it 2 Heard of it 3 Could explain it to a friend

Have you discussed it in class?

4 No 5 Yes

When and what aspects of six of these topics (In vitro fertilisation, Prenatal diagnosis, Biotechnology, Nuclear power, Agricultural Pesticides, Genetic engineering) were actually taught were more closely investigated (Q9), as were their future hopes for curriculum change (Q10):

Q9. Have you ever discussed in class the social, ethical and/or environmental issues associated with applications of these scientific developments? Circle all that apply

1 Social & Ethical 2 Environmental

Which issues and in what classes?

Q10. Do you think that more room should be made in the curriculum for discussion of these issues associated with applications of these scientific developments? Circle all that apply

1 Social & Ethical 2 Environmental

Which issues and in what classes?

Three open questions asked about teaching materials used already (Q11) and needs for further bioethics education (Q12, Q22). Four questions were about animal experiments and guidelines in schools, which are reported elsewhere (Macer et al., 1996; Tsuzuki et al., 1996).

Questionnaires were printed on three double-sided A4 sheets, and two were sent with covering letters to both the principal and the teachers, to each high school principal, requesting the principal to give one to a biology teacher and the other one to a social studies teacher. Return stamped address envelopes were included, and they were posted inside each country. About one quarter of the high schools in Japan (N=1400) were chosen combining a random selection from the total high school list of the Ministry of Education (N=1172) and the schools that replied to the earlier randomized national survey of biology teachers in 1991 (N=228; Macer, 1992). The surveys were posted in early July 1993 in letters addressed to the personal names of the principals in Japan and the "The principal" in Australia and New Zealand.

All the 338 high schools in New Zealand were sent questionnaires in August 1993 using the Ministry of Education school list, and those schools with more than 1000 students were sent four questionnaires (a total of 375 possible teachers in each subject). In Australia, 528 schools were selected from combining all the schools available to foreign students, random selections from telephone books, and 28 public schools with the kind cooperation of the Australian Capital Territory Department of Education and Training, who sent an approval letter to accompany the questionnaires and a list of schools.

Results and Discussion

Response rate and sample characteristics

The response rates are indicated in Table 1. In all countries biology teachers responded more. The response rates were NZb 55%, Ab 48%, Jb 40%, NZs 26%, As 22%, Js 27%. Reminders were sent to schools in Japan that had not replied after two months, which increased response by about 5% to those levels. The response from the new and old schools was not significantly different (In this paper the word "significant" implies a statistical significance of P<0.05). The inclusion of an approval letter from the Australian Capital Territory Department of Education and Training with the questionnaires to the 28 public schools surveyed in Australia did not significantly increase response rate.

The sample characteristics are shown in Table 1. General information gathered in the surveys included sex, age, marital status, children, education, importance of religion (religiousity), race, income and rural/urban locality (Table 1). There are no significant differences in the age of respondent teachers between these three countries. However, there were significantly fewer women among the Japanese teachers than in New Zealand and Australian teachers, reflecting the general teacher population. Significantly more teachers in New Zealand and Australia were postgraduates than Japanese teachers, and Japanese teachers placed less value on religious practice.

The schools were representative of the total in Japan and New Zealand, but in Australia there were more private schools represented in the sample, reflecting the selection of schools in our sampling, which included many schools open to international students. This could also have led to the somewhat higher religiosity among the Australian respondents than in the other two countries. Geographically, responses from all regions of New Zealand, all states of Australia and all prefectures of Japan were obtained (Macer et al. 1996).

Table 1: School and teacher characteristics
%'s NZb NZsAb As JbJs
Number of respondents (N) 20696 251114 560383
Response rate (%) 5526 4822 4027

School characteristics
School size: <2006.3 7.53.6 5.24.9 7.4
<600 26.225.5 42.934.8 20.116.6
<1500 61.260.6 51.254.8 67.368.7
>1500 6.36.4 2.45.2 7.77.4
Location: Urban Public60.4 63.813.5 14.948.6 45.1
Private 9.49.6 61.964.9 15.718.2
Rural Public28.7 24.50.8 0.931.5 33.0
Private 1.52.1 23.819.3 4.23.7

Teacher characteristics

The main subject the teachers taught (%)

Biology 710 590 790
Science 280 270 300
Social / Ethics 047 039 0.498
Geography 050 030 --
Many / Other 1.53 1431 12
Average age (years) 40.842.5 41.842.0 40.740.0
% female 3638 5237 128
% married 83 8679 7077 75
% who have children 78 8576 7670 72
Education: Graduate 6458 5957 7882
Postgraduate 3037 3941 2117
Other 65 1.82 11.3
How important is religion? Very 2017 4247 710
Some 1729 2326 2537
Not too much 33 3219 1045 36
Not at all 3022 1617 2317

Abbreviations in all tables:
NZ=New Zealand; A=Australia; J=Japan; b=biology teacher; s=social teacher

Table 2: Comparative teaching of selected subjects in Australian, Japanese and New Zealand high schools

Q6. Can you tell me how much you have heard or read about each of these subjects?
Not heard of it
Heard of it (Know)
Could explain it to a friend (Explain)

Have you discussed it in class? (Teach - Yes) [GE=genetic engineering]
Subject %'s
Know Teach KnowTeach Know TeachKnow Teach KnowTeach Know Teach
Pesticides Explain T 9588 9282 9585 9062 7676 6067
Heard 5 6 5 10 24 40
IVFExplain T 9884 8636 9791 9256 9076 5531
Heard 2 12 3 8 10 45
PrenatalExplain T 8272 6731 8976 6525 -- --
diagnosis Heard 17 29 10 29 - -
Biological Explain T 9996 8668 9486 8255 7365 3022
pest control Heard 1 13 6 17 24 56
EugenicsExplain T 4836 2614 5238 2622 5438 2817
Heard 33 35 27 34 34 56
Computers Explain T 8161 9592 7860 8470 5738 4650
Heard 19 5 22 16 42 52
Biotechnology Explain T 8878 4431 8979 5440 8988 4954
Heard 12 50 11 38 11 50
Nuclear Explain T 9482 9395 9181 8989 7461 8387
powerHeard 6 7 9 10 25 17
AIDSExplain T 9994 9780 10094 9778 9184 7660
Heard 1 3 0.4 3 9 24
Human gene Explain T 7666 3115 8071 4021 6251 1815
therapyHeard 22 44 16 40 35 61
Fibre optics Explain T 6448 4333 6040 4024 4222 3232
Heard 36 53 38 56 56 63
Bioethics Explain T 7667 3922 7770 6342 5045 3739
Heard 22 43 20 31 47 57
GE - plant Explain T 9388 5636 9185 5642 7469 1822
Heard 7 40 9 43 25 67
GE - micro- Explain T 9081 3012 8676 3918 7266 109
organisms Heard 10 53 13 50 27 71
GE - animal Explain T 9181 5238 9185 5744 6759 1720
Heard 9 44 9 43 32 68

Teaching of bioethics

There were three questions to investigate the teaching of bioethics. Q6 investigated how much teachers thought they knew about each of fifteen subjects, and whether they taught them. In Q9, six of these fifteen issues of Q6 (in vitro fertilization, prenatal diagnosis, biotechnology, nuclear power, pesticide, and genetic engineering) were included, and the teaching of the associated social and ethical problems, and/or environmental problems, were examined with open questions. In Q10 teachers were asked the same questions as Q9 about their ideas on the future curriculum.

I. The range of knowledge about issues related to bioethics and teaching of these issues

Overall biology teachers had greater self-reported knowledge about the issues than social studies teachers in New Zealand, Australia, and Japan (Table 2). However, biology and social studies teachers had similar knowledge about the issues of nuclear power in all three countries, and about pesticides, in vitro fertilization, and AIDS in New Zealand and Australia. Also in New Zealand and Australia social studies teachers said they had more knowledge about computers than biology teachers did.

Trends in self-stated knowledge were reflected in the teaching, and biology teachers generally taught the issues more than social studies teachers in all countries. The subjects which social studies teachers had dealt with more was nuclear power and computers in all three countries, and fibre optics in Japan. Looking at the differences between countries, Japanese biology teachers had generally taught less about these issues than New Zealand and Australia ones, except the issues of biotechnology and eugenics. Australian social studies teachers were most positive about reporting teaching among the social studies teachers in the three countries, and Japanese social studies teachers were the least positive. Only in the teaching of biotechnology did Japanese social studies teachers appear to be positive more than social studies teachers in other two countries, which could reflect the generally higher awareness of the word "biotechnology" in Japan seen in past surveys (Macer 1992, 1994).

Table 3: Comparative teaching of the ethical, social and environmental issues

Have = Q9. Have you ever discussed in class the social, ethical and/or environmental issues associated with applications of these scientific developments?

More = Q10. Do you think that more room should be made in the curriculum for discussion of these issues associated with applications of these scientific developments?
Subject Issues

% Yes

have more havemore have morehave more havemore have more
IVFsocial & ethical 7755 3845 8750 5560 5762 3171
environmental 1521 911 1718 1425 711 28
Prenatalsocial & ethical 6756 2950 7450 2953 4055 1961
diagnosis environmental 1118 710 1418 518 411 311
Biotechnology social & ethical 5162 2647 6750 3555 4758 3258
environmental 4660 2943 4943 2741 3949 2650
Nuclear power social & ethical 6054 6866 6147 6355 2540 3748
environmental 8666 9066 7752 7559 6684 8387
Pesticides social & ethical 5953 3241 4341 3952 1828 1729
environmental 8672 4161 9057 5764 5271 2772
Geneticsocial & ethical 8572 4161 9057 5764 5271 2772
engineering environmental 4453 1928 5344 2541 3042 825

II. Current teaching about social, ethical and/or environmental issues

The results of Q9 and Q10 are in Table 3. For three out of the six issues, biotechnology, pesticides, and genetic engineering, the social, ethical and environmental issues were discussed more by biology teachers than social studies teachers in all three countries. The issues of in vitro fertilization (IVF) and prenatal diagnosis were dealt with more by biology teachers in New Zealand and Australia, whereas they were equally discussed by biology and social studies teachers in Japan. Social studies teachers more often taught about nuclear power in all countries; social studies teachers in Australia and Japan dealt with social, ethical and environmental issues of nuclear power more than biology teachers, and social studies teachers in New Zealand dealt with environmental issues. The scientific subjects which had social, ethical and/or environmental issues most frequently discussed were nuclear power in all countries, pesticides in New Zealand and Japan, genetic engineering in New Zealand and Australia, and in vitro fertilization in Australia.

Moral education courses may generally include more social issues than environmental ones but obviously it depends upon the subject. In all three countries both groups of teachers focused on social and ethical issues more for IVF, prenatal diagnosis, and genetic engineering , but environmental issues more for nuclear power and pesticides, which is logical. In Australia and Japan the social and ethical issues of biotechnology were dealt with more, however, in New Zealand, social and ethical, and environmental issues were taught to a similar degree.

There was scope for teachers to indicate other areas that they had covered ethical or environmental aspects of technology, or moral education. There were a variety of "other" comments that cited in response to Q9 and Q10. For Australian teachers these included: personal development, child development, physical and human development, human relationships, human behaviour, child care, humanities, modern conflict, Australian studies, general study, reproduction, biotechnology, psychology, sex education, reproduction unit, power, legal, economics, energy, and citizenship education. For New Zealand these included: economics, history, peace studies, legal, energy applications, life skills, general studies, moral, classical study, child care, extension classes, reproduction, civics, anthropology, environmental studies, sexuality course. In Japan there were less other comments given for the classes, with the following included: Religion, Catholic ethics, all subjects, morals, electricity, anti-discrimination classes (Dowa-Kyoiku), Nursing.

Teachers in every country reported teaching these issues in classes which they were in charge, naturally. Geography classes are included among the social classes in Japan, where teachers may not separate them, unlike in New Zealand and Australia. In Australia these issues were taught more in senior years in all classes, for example the last two years, grade 11 and 12, whereas in New Zealand teachers recommended throughout all five high school years, form 3 to form 7. In Japan most teachers only suggested the subjects in which they themselves dealt with, but did not specify in which years they taught (though they may have thought that we could easily imagine the year in school for each subject from the set curriculum).

III. Future education related to bioethical issues

Compared to the differences seen in current teaching of the six issues (Q9) there is almost no difference seen in teachers' attitudes towards future teaching of these issues among all three countries (Q10, Table 3). Many teachers felt more education was needed especially on the issues associated with genetic engineering, nuclear power, and pesticides in all countries, and about IVF in Australia and Japan. Overall, teachers thought they should focus more on the social and ethical issues of IVF, prenatal diagnosis, and genetic engineering, environmental issues of pesticides, and both sets of issues for biotechnology and nuclear power.

There is an interesting trend in which subjects these teachers wanted to teach such issues. In all countries geography and social studies teachers wished them to be taught not only in geography and social studies classes but also in science classes. In New Zealand and Australia, biology teachers thought these topics should be taught in science classes, whereas Japanese biology teachers said both in science and social studies classes. In New Zealand, biology teachers especially wanted to teach the issues of genetic engineering, biotechnology, and prenatal diagnosis in science classes. Geography and social studies teachers thought that it is also appropriate to teach in science classes, but they still thought that the issues like nuclear power and pesticides should mainly be dealt with in geography and social studies classes. In Australia geography and social studies teachers especially wanted to teach the issues of IVF and pesticides in geography and social studies classes; with prenatal diagnosis, biotechnology , and genetic engineering mainly in science classes; and nuclear power in both classes. In Japan biology teachers wanted to teach the issues like IVF, biotechnology, pesticides, and genetic engineering in science classes; and prenatal diagnosis and nuclear power in both classes. On the other hand, Japanese social studies teachers especially thought issues such as IVF, prenatal diagnosis, nuclear power and pesticides should be taught in social studies classes; and biotechnology and genetic engineering in both classes.

Many Japanese teachers also mentioned health and home economics classes as possible teaching sites to deal with these issues. In New Zealand and Australia no one said home economics classes, and very few suggested health classes, though these could be less common. In Japan health and home economics classes have the advantage that teachers can handle classes freely, being not related to university entrance examinations; and all students have to take these classes. However, some students or teachers might not pay much attention to these issues if in these classes because of the fact that health and home economics classes are not the subjects for university entrance examinations.

This makes us ask where the best place for bioethics is, and whether it can be examined or not. Some teachers said that we should teach these issues in many classes, instead of narrowing to a particular subject. Some also mentioned that this kind of education should be conducted at home, too. The category "other" includes anthropology, Australian studies, child care, etc. Some of which could be considered to be analogous to home economics in Japan.

In addition, Q10b asked Japanese teachers at which level, national, prefecture, or school, it is most appropriate to regulate the curriculum for this kind of education. Most of teachers said the national level (Jb=40%, Js=42%), then the school level (Jb=16%, Js=11%), and the prefecture level (Jb=8.3%, Js=5.5%), with a significant proportion not expressing a view (Jb=41%, Js=37%).

Table 4: Images of bioethics
Q5: What do you think bioethics is?


N205 100250 120561 384
Not stated 5.99.0 5.25.8 28.731.0
Respect for life 3.42.0 0.83.3 27.521.9
Natural providence 1.53.0 0.82.5 9.39.6
A very important subject 1.00 00 1.69.4
How we should use life 28.819.0 26.813.4 6.86.5
Science / biology raises issues 32.224.0 28.830.0 2.16.8
People face issues 0.50 00 1.31.3
Debate is useful 1.03.0 0.41.7 2.50
Decide before use 9.820.0 14.018.4 4.15.5
How to apply biology/ biotech 14.113.0 19.219.1 5.33.9
Don't trust science 00 00 0.20.3
Environmental issues 6.812.0 3.63.3 6.34.7
Animal rights / experiments 17.612.0 8.05.0 1.10
Human benefit / rights 1.51.0 2.81.7 9.321.9
Medical issues 4.46.0 14.010.9 5.96.5
Other2.0 00 2.56.8 6.0
Don't know 03.0 0.43.3 2.02.3

Images of bioethics

The subject of the survey was "bioethics", a word which is not familiar to all people (Macer 1994), and biology teachers were more familiar with it (Table 4). It is a basic question to ask respondents what they thought bioethics is. We did this at the start of the questionnaire before their ideas might have been modified by the contents of the rest of the questionnaire. The ideas were examined and categorized into up to two categories, as shown in Table 4. The Japanese comments were translated into English, and categories checked. A full list of comments has been published (Macer 1994a, Macer et al. 1996). To illustrate the process of categorizing, some example comments are presented below.

Respect for life
The right and respectful use of living / dead organisms and the issues surrounding. (+ Using life)
Others must not violate the rights to sustain or terminate the power to live.

Science/biology raises issues
The moral and social issues related to biological science.
I think it is a concept concerned with how humans should live and how humans should be, corresponding to the rapid progress of scientific technologies especially in medicine and biology, etc. (+ Medicine)

People face issues in the world
Something that humans have to acquire as a minimum in our life.
It considers current problems which are related with the activities of human life.

Don't trust science
When humans cannot understand the necessity of the huge chain in the natural world, we think it is an accident. The world of life is still an accidental world for humans. It is not just a little dangerous, and it is an arrogant act to try to do artificial manipulation to the natural chain which we have not understood yet. Thus, I think bioethics is to control the act of some arrogant scientists. (+ Decide before use)

Environmental problems
The study of the interaction of life and the environment.
All individual organisms (individuals belonging to the human race) have rights to live equally. But, we have to pay attention to the existence of other organisms (species), since human beings are supported by other organisms. In this case, when we have to sacrifice other organism's life, we should try to sacrifice as little as possible.
Nature !!

Animal experiments
The pros and cons of using live animals in scientific experiments, and raising animals to be killed for use in experiments.
It is not just a feeling of pity for animals, neither the thinking that humans stand above everything. Nor just a guideline of research activity of others, nor a thing which forces one's religious or racial habits on others. (+ Other)

Debate is useful/ decision-making
Challenging area of moral debate.
The way of thinking differs depending on the social situation, but at least, it [bioethics] should not be decided only by knowledgeable persons.
We should have a discussion on TV covering bioethics broadly by scientists to ethical and correct reform of politicians. Ban on research in secret and obligation of reporting the research (both success and failure).

I had no idea until I read the accompanying letter.
I am thinking vaguely, but I think it is the root to consider reasons.

Don't know
Never heard the term before.
I sometimes come across [this word] in TV, newspaper, etc., but it is something in another dimension and it doesn't ring a bell.

Medical problems
The study of ethical and moral issues related to medical technology.
I've never thought deeply before I received this questionnaire. These days, I sometimes wonder whether we really need birth with in vitro fertilization, and genetic manipulation. (+ how to apply)

How we should use life
Morals or standards associated with living things.
I think [bioethics] is to consider how to deal with artificial manipulation and alteration which affects birth, death, and existence of organisms (especially human), from the moral and philosophical viewpoint.

Human benefit / rights
Ethical issues which relate to or have an effect ultimately on humans.
Respect for personality.

Natural providence
The ethics, morality and issues surrounding biological technology, especially ability to play God, giving life, prolonging life, changing life - gene shearing, etc. (+ Decide before use)
Something which follows natural providence.

Decide before use
Decisions made for the good of society on topics involving living organisms.
It occurs when the development of science brings changes and influences to the life standard of humans. The common understanding which becomes necessary from the view point of science.

How to apply biology / biotechnology
Moral issues relative to the use of biotechnology.
A judgement standard for determining how much artificial manipulation of life phenomena can be allowed.

Very important
It is very important, and a central subject in a class.
It is the most revered thing of humans, which we cannot regulate by law.

From the category analysis (Table 4), we can see the similar attitudes towards images of bioethics in New Zealand and Australian teachers. They frequently mentioned "How we should use life", "Science/biology raises issues", "Decide before use", and "How to apply biotechnology". On the other hand, Japanese teachers more frequently mentioned "Respect for life", "Natural providence", "A very important subject", and "Human benefit/ right", especially social studies teachers. This suggests a more practical understanding of the issues in New Zealand and Australia, and that teachers are more at the first stage of recognition of bioethics in Japan, with more abstract images and less practical.

The comments including animal rights or experiments were also less in Japan, which may also reflect less concern about these issues. In Australia medical issues were more frequently mentioned, which could be due to inclusion of such curriculum cases as these or debate in Australia where bioethics education is quite developed. Two of the examples given above under "Other" and "Don't know", and underlined illustrate how some teachers may have found the questionnaire of some educational value in making them aware of the issues included.

Table 5: Is bioethics needed in education
Q21: Do you think that bioethics is needed in education?


N 202 90228 100530 348
Very much 47 4056 5735 42
Some 5155 4141 5149
Neither 22 21 139
Not really needed 0.5 31 11 0
Not needed 0 00 00.4 0

Why? Reasons given
Not stated 23.835.2 26.233.0 41.944.0
Respect for life 16.83.4 10.06.3 27.626.1
Science raises issues 26.826.1 25.728.6 6.811.2
People face issues in world 20.819.3 25.022.3 4.74.9
Don't trust science 2.52.3 4.36.3 0.41.2
Environmental problems 5.56.8 3.23.6 7.24.6
Animal experiments issues 8.41.1 5.20 2.60
Debate is needed 0.51.1 4.40.9 10.210.1
Other 3.00 6.04.5 3.63.7
Teachers may be biased 00 0.40 0.80.5
Don't know 0.50 00 5.82.3

In which subject?
Biology 4019 5231 4325
Science 3524 4540 178.7
Social 2.520 4.426 1633
Geography 010 1.87.0 --
Religion/Ethics/Moral 0.52.2 7.920 8.122
Health 0.5 00 1.017 12
Home economics 0 00 04.5 3.4
Home room 0 00 015 2.4
Language (English/Japanese) 0 1.12.2 6.01.4 2.1
Others 0.5 1.14.4 124.0 5.6
Many 12 3.313 1213 13
Not Stated 4758 2523 2830

Reasons why bioethics education is needed

After completing the questionnaire we found most teachers were very supportive of bioethics education (Q21, Table 5), though the respondents are self-selected and we may have a bias towards the most supportive. Overall Australian teachers were most positive to bioethics education. In New Zealand and Australia the major reasons given why bioethics education is needed were "People faces issues in the world" and "Science raises issues". On the contrary, in Japan the major reason was "Respect for life", as it had been for Q5 (Table 3). However, significant numbers of Japanese teachers included ideas like "Debate is useful / it is dangerous not to have bioethics education". These comments are more concrete than shown in Q5, so their reasons for needs of bioethics education were more practical than their images of bioethics. It must be recognized that the sample of teachers selected by principals, and the respondents who spent the time to complete the questionnaire, could have led to bias in the response.

In the comments categorized under "Debate is useful / it is dangerous not to have bioethics education", a number of Japanese teachers wrote that mass media and civilized environment had led children to disrespect life in recent days. This kind of concern itself was not a specific feature of Japan, some teachers in New Zealand and Australia also expressed similar ideas, with more emphasis on the "Respect for life" theme. Japanese teachers may be more cautious about this trend among the young generation, and some had strong thoughts that it is dangerous not to have bioethics education. Bioethics education could influence the general climate of thought. The Australasian teachers appear to be already involved in this education, thus a trend for more concrete reasons as discussed above.

No teachers in New Zealand and Australia, and only a few teachers in Japan (Jb=1.3 %, Js=1.6 %) specifically mentioned medical issues as a reason for bioethics education, although 11-14% of Australian teachers had mentioned medical issues as a image of bioethics (Q5). The frequency of such medical comments may vary as a result of the questionnaire, because the questionnaire dealt with bioethics broadly. It may have got teachers to think about bioethical issues in non-medical biology, science and technology. This suggests that the questionnaire itself could influence teacher's attitudes and ideas.

In all countries, teachers more frequently included ideas like "People face issues in the world" and "Don't trust science" as reasons for teaching bioethics than they mentioned as images of bioethics. The "Don't trust science" comments included more extreme comments than the "Science/biology raises issues" or "People face issues in the world" categories. Many teachers do feel there is a need for students to make bioethical decisions in their future life, and some mentioned the general public should participate in discussion of bioethical issues. They held a strong responsibility to educate youngsters. The "How to apply bio(technology)" comments are more specific than "Science/biology raises issues". One of the reasons why many teachers in every country gave strong comments in the last part of the questionnaire may be that they had thought of issues throughout the questionnaire and acquired a broader and/or clearer picture of bioethics and bioethics education. On the other hand, although the question on the images of bioethics appeared early in the questionnaire and many expressed ideas about technology, teachers' answers to later questions may have actually been influenced by the science and technology focus of the questionnaire.

Agreement that science raises issues

The attitudes to teaching bioethics may be related to personal perceptions of science. Six questions were common to the International Bioethics Survey among public and students (Macer, 1994). All samples in all countries valued the contribution of science and technology to life, with 99% of Australia and New Zealand biology teachers, and 95% of social teachers (the same as the public) agreeing that "Science makes an important contribution to the quality of life". Japanese teachers were significantly less enthusiastic, but still 83% of biology teachers agreed and 79% of social teachers. Teachers were generally more cautious than the public with the statement, "Most problems can be solved by applying more and better technology", with 46% of NZb, 32% NZs, 31% Ab, 24% As, 32% Jb, and 29% Js agreeing, and 28% NZb, 38% NZs, 39% Ab, 58% As, 18% Jb and 24% Js disagreeing.

Questions on the perceptions of benefit and risks of selected topics (Table 6), and open response questions showing the reasoning were more revealing, and the results of category analysis allow examination of the depth of thinking (Macer, 1994). The most favourable responses were seen for computers and fibre optics. For biotechnology and genetic engineering the social studies teachers were significantly less positive in all countries, and for genetic engineering they had significantly more concerns than biology teachers. Pesticides were of intermediate support, with less support by biology teachers than biotechnology but more support from social studies teachers. Nuclear power was generally less supported, especially in New Zealand. The main reasons given for agreement for IVF were that it helps infertile couples, and about 15% said it raised ethical issues. In another question, 54% NZb, 46% NZs, 38% Ab, 42% As, 22% Jb and 18% of Js approved of surrogacy using IVF. For pesticides there were slightly more environmental concerns than health worries.

Less social studies teachers understood biotechnology and genetic engineering than biology teachers (Q6), and many social studies teachers in all the countries said that science classes were also appropriate to teach social, ethical and environmental issues (Q10). This lower understanding may explain why social studies teachers were significantly less positive towards biotechnology and genetic engineering. However, although Australians were more positive about biotechnology, they also had more worries, the same as the public (Macer, 1994). About a half did not say any benefit, and there was variety of benefits given, with general hopes for humanity being the major reason. Only about 2% of biology teachers and 7% of social studies teachers saw it as unnatural, the major worry was human misuse (about 20%) in Australia. Similar concerns were seen for genetic engineering although more teachers in all samples had greater degree of concern than for biotechnology, but people were more positive about specific examples. In 1991 the same survey that was used for biology teachers in Japan in that year was also given to scientists, and the scientists also had concern about general questions on biotechnology and genetic engineering, suggesting that familiarity with the subject does not always equate with lower degree of concern (Macer, 1992).

As in the 1991 surveys and in the International Bioethics Survey, there was strong support for the specific examples of environmental release of genetically modified organisms (Macer, 1994). The highest level of support was seen for bacteria to clean oil spills and disease resistant crops, with over a half supporting tasty tomatoes or meat with less fat. There was less support for making milk from cows, which certainly is a more questionable goal in Australasia, and least support for making a bigger sports fish. The fish is an example of enhancement genetic engineering. The responses to the questions about human gene therapy also showed teachers and the general public or students do have significant discretion over therapeutic and cosmetic applications of gene therapy. There was lower support for enhancement uses (improving physique, intelligence, making more ethical) than for treating disease, high support for use of gene therapy to cure disease, inheritable (fatal, non-fatal); and high support as an AIDS vaccine (Macer, 1994; Macer et al. 1995).

In general the teachers had a positive view of science and technology and for computers and nuclear power the social studies teachers were somewhat more positive. However nearly all the teachers expressed some degree of doubt about teaching science in the complete absence of consideration for environmental, ethical, and/or social issues, as well as expressing their own doubts about some technologies.

Table 6: Perceptions of benefit (Q6) or risk (Q7), and open comments about science and technology

Q6. Do you personally believe XXX is a worthwhile area for scientific research? Why?...

Q7. Do you have any worries about the impact of research or applications of XXX? How much? Why?...

NZb NZsAb AsJb Js
In vitro fertilisation
Q6 Yes85 7780 7980 66
No 108 1111 914
Don't know 515 910 1120
Q7 No worries 2529 1617 1212
A few 3930 2522 5042
Some 2429 3536 2629
A lot 1213 2425 1217
NZb NZsAb AsJb Js
Q6 Yes95 9893 9093 92
No 0.50 12 22
Don't know 42 68 56
Q7 No worries 5353 4739 5752
A few 3124 2732 3234
Some 1420 2021 79
A lot 23 68 45
NZb NZsAb AsJb Js
Q6 Yes94 6293 7395 87
No 03 0.40 25
Don't know 635 727 38
Q7 No worries 4231 2329 2222
A few 3738 3725 4946
Some 1727 3128 2122
A lot 44 918 810
NZb NZsAb AsJb Js
Nuclear Power
Q6 Yes60 6275 7573 78
No 2333 1716 1816
Don't know 75 89 96
Q7 No worries 96 67 79
A few 1612 2020 2125
Some 2127 3228 2921
A lot 5455 4245 4345
NZb NZsAb AsJb Js
Q6 Yes82 7786 8488 86
No 1314 75 76
Don't know 59 711 58
Q7 No worries 1210 1213 1117
A few 2213 1918 3433
Some 3642 3933 3528
A lot 3035 3036 2022
NZb NZsAb AsJb Js
Genetic engineering
Q6 Yes92 6094 6990 74
No 420 114 49
Don't know 420 517 617
Q7 No worries 139 1110 1515
A few 3411 2312 4434
Some 3838 3929 2829
A lot 1542 2749 1422

Information and Teaching Resources

There were three questions about the materials used to teach bioethical issues, and the results of these questions are summarized in Table 7. Most teachers said that they did not have sufficient materials to teach about these issues (Q12). The responses were very diverse, especially to Q22. Among the common responses in the "Many/other" category were school visits by scientists. In the South Australian survey (SCBI, 1992) of 120 schools the main request was for fact sheets, or discussion material - as was common in this survey. The issues regarded most important from their list of six were firstly genetic engineering, then in vitro fertilization, AIDS, abortion, euthanasia, and little interest was shown in surrogacy.

A survey of 1993-1994 textbooks in Japan found that there was inclusion of environmental issues in almost all biology and social studies texts. There was mention of pesticides in two thirds of biology textbooks, and discussion of technical issues of genetic engineering in most. Genetic engineering was the major topic of the six we chose that did have some benefits and a few concerns included in most texts. There was also some discussion of nuclear power in social studies textbooks. There is however a trend to include more bioethical issues in more recent textbooks, as some issues are introduced, for example, bioethics has been introduced as a few pages of most ethics textbooks since 1994.

In 1994 teaching materials were developed, as discussions sheets and sent to high school teachers who had requested a summary of the results of the survey (about 500 in Japan, and about 160 in Australia and New Zealand). These are being improved with feedback from teachers. The materials included discussion sheets on bioethics, assisted reproduction, human genetics, genetic engineering, and animal rights. These materials are open for free copying by teachers, and on-going assessment and improvement with the willing teachers in these countries, continues to be encouraged. The materials are available on Internet <http://eubios.info/index.htm" > which should make them more readily available to teachers in the future. We hope further teachers will join, and eventually some of these materials will be used in the curriculum to ensure all students get to think about these issues.

Table 7: Teaching Resources
Q12. Do you have sufficient material to teach about these issues?
Yes (%)11 23 2828 3* 14*
Q11. What books and material do you use to teach about these issues?

Q12. Do you have sufficient material to teach about these issues? What other teaching aids would you suggest?

Q22. What do you need, for example what teaching materials, if bioethics is included in the school syllabus in future?

Reasons 11 12 22 11 12 22 11 12 22 11 12 22 11 12 22 11 12 22
Not stated 5 1320 1020 478 1722 1118 3724 6135 2252 44
Video/TV16 1813 1917 731 2019 2620 1329 175 3713 5
Textbook26 212 246 337 27 231 210 25 53 3
Other book 19 53 252 023 32 221 222 43 203 4


7 31 90 18 40 114 01 0.3 01 0.2 0


62 22 384 160 62 478 344 40.2 475 0.3
Many things 11 2515 1323 1818 2224 2014 214 617 313 12
Discuss S&T 6 2344 319 214 2233 631 320.3 17 11 2
Fact sheets 413 132 57 37 82 77 31 102 24
Need new information 3 2014 016 73 2311 415 30 19 01 5
Reference list 1 53 00 10 11 01 00 0.3 00.2 0.4 0
Experimental ideas 0 13 01 11 11 01 00 01 10 1
Teachers course 8 44 02 04 13 31 40 05 01 3
Shortage5 71 75 33 51 18 39 30 114 0.3
Need information - -3 -- 0- -5 -- 0- -12 -- 18
Need to think - - 0- -1 -- 0.4 -- 0- -10 -- 10
Don't need 0 23 06 10 42 04 30 42 04 0.3
Don't know 0.50.5 0.5 00 60 00.4 10 30 32 0.4 32

* About 40% of the Japanese teachers did not answer Q12, and about 40% of those who answered Q12 had doubts about it, though also suggesting some material. The reasons are based on %'s of the total who answered Q11.


Moral education can be either taught as a separate subject, or incorporated in appropriate places in other subjects. In this survey we found there is strong support for teaching students about the ethical and social issues associated with science and technology, and such issues are already introduced into the curriculum to varying degrees in these three countries. There is more inclusion in Australia and New Zealand than in Japan. There are reviews underway in all countries, and a trend towards more discussion of these issues.

In Japan there are specific "Ethics" classes which could be thought to be the place for moral education, and several bioethical issues were briefly mentioned in textbooks of ethics classes since the 1994 academic year. Teachers from other subjects said some of these issues were already included in the curriculum for their subject, and the teaching patterns revealed by Q5 and Q9 supported this. There were a range of classes and years at which these issues were taught. Some teachers also felt that these issues needed to be taught at the discretion of the teachers.

There should be research into how these issues are being best taught, the most suitable issues, classes and the most effective way to make students think. They are relevant to both science and social studies classes, as well as other subjects, not only to specific moral education. If we include bioethics as a subject in the curriculum we have to think about its evaluation. Tests will be set to measure students learning, but it is very difficult to assess real understanding of the issues. Several methods for assessing education of moral decision-making have been tested for general bioethics (Barman & Hendrix, 1983) and medical issues (Rest, 1986; Self et al., 1989). One of the important principles is that there is a continuum from acceptable to unacceptable and there is not necessarily any right answer. However, the process of making students think can help teach them to assess bioethical principles (Hendrix, 1993). Bioethics in our view should remain interdisciplinary, and is not the teaching of information but the teaching of thinking, reasoning and decision-making, which involves balancing of the issues.

There is, arguably, more potential for teacher bias in moral issues to influence students views than in natural sciences or mathematics. One possibility to develop mature students is to have some issues covered from the perspective of different disciplines, such as biology and social studies. Over some issues there are some significant attitudinal differences between these two teaching specialties (e.g. science and quality of life, benefits of genetically modified organisms; benefits of biotechnology; benefits and risks of genetic engineering; level of concern about foodstuffs made from genetically modified organisms). Science teachers should also be encouraged to include the teaching of these issues in science courses, especially in some subjects, such as human gene therapy, biotechnology and genetic engineering, where there is significant difference in familiarity. However, in general when the perceptions of different areas of science and technology (Q7, Q8) varied, it was along country lines rather than with teacher's specialty. Overall there were quite similar attitudes to many of these questions between the different countries, consistent with the general public and student attitudes revealed in the International Bioethics Survey. What was especially interesting was that many teachers had similar desire for future bioethics education (Q10), although they had had different teaching experience and style (Q6,9).

Education of decision-making is essential for the future moral maturation of society (Macer, 1994a, 1994b). From the teachers' images of bioethics (Q5) and the reasons why they thought bioethics education was needed (Q21), it appears that Japanese teachers could be considered to be at an earlier stage of consideration of bioethics, compared to New Zealand and Australian teachers. It will be interesting to monitor how, and if, Japanese teachers' attitudes will change as bioethics education becomes more common and experience grows. Also it will be interesting to see how bioethics could affect the education system in Japan, because often bioethics does not provide only one answer, whereas in Japanese education teachers tend to find only one right answer. Interestingly however, in a survey of the logical thinking process of Japanese students, they scored better than US students, and developed ability between 7th to 9th grade (Mattheis et al. 1992). There are several conclusions for moral educators from this survey, but a clear message is that no teaching discipline has a monopoly over the teaching of ethical, social or environmental issues of science and technology.

Braman, C.R. & Hendrix, J.R. (1983) "Exploring bioethical issues: An instructional model", American Biology Teacher 45: 23-31.
Couchman, P. & Fink-Jensen, K. Public Attitudes to Genetic Engineering in New Zealand, DSIR Crop Research Report No. 138. DSIR Crop Research, Private Bag, Christchurch, NZ, 1990.
Hendrix, J.R. (1993) "The continuum: A teaching strategy for science and society issues", American Biology Teacher 55: 178-81.
Kumano, Y. (1991) "Why does Japan need STS .... A comparative study of secondary science education between Japan and the U.S. focusing on an STS approach", Bull. Sci. Tech. Soc. 11: 322-30.
Lock, R. & Miles, C. (1993) "Biotechnology and genetic engineering: students' knowledge and attitudes", J. Biological Education 27: 267-72.
Macer, D.R.J. (1992a). Attitudes to Genetic Engineering: Japanese and International Comparisons. (Eubios Ethics Institute, Christchurch, N.Z.).
Macer, D.R.J. (1992b) Public acceptance of human gene therapy and perceptions of human genetic manipulation. Hum. Gene Ther. 3, 511-8.
Macer, D. (1992c) The 'far east' of biological ethics. Nature 359, 770.
Macer, D.R.J. (1994a). Bioethics for the People by the People. (Eubios Ethics Institute, Christchurch, N.Z.).
Macer, D. (1994b). Perception of risks and benefits of in vitro fertilization, genetic engineering and biotechnology. Social Science and Medicine 38, 23-33.
Macer, D.R.J., Akiyama, S., Alora, A.T., Asada, Y., Azariah, J., Azariah, H., Boost, M.V., Chatwachirawong, P., Kato, Y., Kaushik, V., Leavitt, F.J., Macer, N.Y., Ong, C.C., Srinives, P. & Tsuzuki, M. (1995), "International perceptions and approval of gene therapy", Human Gene Therapy 6, 791-803.
Macer, D.R.J., Asada, Y., Tsuzuki, M., Akiyama, S., & Macer, N.Y. Bioethics in high schools in Australia, New Zealand and Japan, Eubios Ethics Institute, 1996.
Mattheis, F.E. et al. (1992) "A study of the logical thinking skills and integrated process skills of junior high school students in North Carolina and Japan", Science Education 76: 211-22.
Ramsey, J. (1993) "The science education reform movement: Implications for social responsibility", Science Education 77: 235-58.
Rest, J.R. Moral Development: Advances in Research and Theory (New York: Praeger, 1986).
SCBI - Southern Cross Bioethics Institute (1992), Feasibility Study on Bioethics Study Notes.
Self, D., Wolkinsky, F.D. & Baldwin, D.C. (1989) "The effect of teaching medical ethics on medical students' moral reasoning", Academic Medicine 64: 755-9.
Tsuzuki, M., Asada, Y., Akiyama, S., Macer, N.Y. & Macer, D.R.J. "Attitudes to animal experiments in high schools in Australia, New Zealand and Japan", submitted for publication.
Waks, L.J. & Barchi, B.A. (1992) "STS in U.S. school science: perceptions of selected leaders and their implications for STS education", Science Education 76: 79-90.
Yager, R. (1990) "Science/technology/society movement in the United States: Its origin, evolution, and rationale", Social Education 54: 198-201.

To Papers list
To Eubios Ethics Institute book list
To Eubios Ethics Institute home page

Please send comments to Email < Macer@sakura.cc.tsukuba.ac.jp >.